WRITING THE EQUATION OF A LINE GIVEN TWO POINTS

Example 1

Write the equation of the line that passes through the points (1, 9) and (-2, -3).

Position the two points approximately where they belong on coordinate axes—you do not need to be precise. Draw a generic slope triangle.

Calculate slope = $\frac{\Delta y}{\Delta x} = \frac{12}{3} = 4$ using the given values of the two points.

Write the general equation of a line. Substitute m and either one of the points into the equation. For example, use (x, y) = (1, 9) and m = 4.

$$y = mx + b$$
$$9 = 4(1) + b$$

Solve for b. 5 = b Write the complete equation.

$$y = 4x + 5$$

Example 2

Write the equation of the line that passes through the points (8,3) and (4,6).

Draw a generic slope triangle located approximately on coordinate axes. Approximate the locations of the given points.

Calculate $m = \frac{\Delta y}{\Delta x} = -\frac{3}{4}$. The slope is negative since the line goes down left to right.

Substitute m and either one of the points, for example (8, 3), into the general equation for a line.

$$y = mx + b$$
$$3 = -\frac{3}{4}(8) + b$$

$$\frac{\Delta y}{\Delta x} = \frac{-3}{4}$$
$$m = -\frac{3}{4}$$

Solve for b. 9 = b Write the complete equation. $y = -\frac{3}{4}x + 9$

Problems

Write the equation of the line containing each pair of points.

1.
$$(1,1)$$
 and $(0,4)$

3.
$$(1,3)$$
 and $(-5,-15)$

5.
$$(2,-1)$$
 and $(3,-3)$

5.
$$(2,-1)$$
 and $(3,-3)$ 6. $(4,5)$ and $(-2,-4)$

7.
$$(1, -4)$$
 and $(-2, 5)$

$$(1, -4)$$
 and $(-2, 5)$ 8. $(-3, -2)$ and $(5, -2)$ 9. $(-4, 1)$ and $(5, -2)$

Answers

1.
$$y = -3x + 4$$

2.
$$y = \frac{3}{4}x + \frac{1}{4}$$
 3. $y = 3x$

$$3. \quad y = 3x$$

4.
$$y = \frac{2}{5}x + 3\frac{4}{5}$$
 5. $y = -2x + 3$ 6. $y = \frac{3}{2}x - 1$

5.
$$y = -2x + 3$$

6.
$$y = \frac{3}{2}x - 1$$

7.
$$y = -3x - 1$$

8.
$$y = -2$$

9.
$$y = -\frac{1}{3}x - \frac{1}{3}$$